產(chǎn)品編號(hào) | bs-14618R-Cy5.5 |
英文名稱 | Rabbit Anti-Simian Rotavirus VP8/Cy5.5 Conjugated antibody |
中文名稱 | Cy5.5標(biāo)記的辛諾柏病毒糖VP8抗體 |
別 名 | Simian Rotavirus VP8/VP4; Simian Rotavirus VP8 + VP4; Outer capsid protein VP8; Hemagglutinin; VP4_ROTSS; Outer Capsid protein VP4 (Hemagglutinin); Outer capsid protein VP4; RVA s4gp1; RVAs4gp1; VP4; Outer capsid protein VP4; Outer capsid protein VP8*; Simian Rotavirus VP8*. |
規(guī)格價(jià)格 | 100ul/2980元 購(gòu)買 大包裝/詢價(jià) |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 細(xì)菌及病毒 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 26/87kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from Simian Rotavirus VP8 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Simian Rotavirus VP4 (Outer Capsid protein VP4) (Hemagglutinin) functions as a spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1. VP4 is a homotrimer and adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP4 interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. VP4 interacts with host integrin heterodimer TGA4/ITGB1 and ITGA4/ITGB7. Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Function: Spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1 (By similarity). Outer capsid protein VP5*: forms the spike 'foot' and 'body'. Acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. In integrin-dependent strains, VP5* targets the integrin heterodimer ITGA2/ITGB1 for cell attachment (By similarity). VP8* forms the head of the spikes. It is the viral hemagglutinin and an important target of neutralizing antibodies. In sialic acid-dependent strains, VP8* binds to host cell sialic acid, most probably a ganglioside, providing the initial contact. Subunit: VP4 is a homotrimer (Potential). VP4 adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. Only hints of the third molecule are observed above the capsid surface. It probably performs a series of molecular rearrangements during viral entry. Prior to trypsin cleavage, it is flexible. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP5* is a homotrimer (Potential). The trimer is coiled-coil stabilized by its C-terminus, however, its N-terminus, known as antigen domain or 'body', seems to be flexible allowing it to self-associate either as a dimer or a trimer. The two- to three-fold reorganization and fold-back of VP5* may be linked to membrane penetration, by exposing its hydrophobic region. Interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. Interacts with host integrin heterodimer ITGA4/ITGB1 and ITGA4/ITGB7. Subcellular Location: Outer capsid protein VP4: Virion. Host rough endoplasmic reticulum (Potential). Note=Immature double-layered particles assembled in the cytoplasm bud across the membrane of the endoplasmic reticulum, acquiring during this process a transient lipid membrane that is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the non-structural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles. Outer capsid protein VP8*: Virion. Note=Outer capsid protein. Outer capsid protein VP5*: Virion. Note=Outer capsid protein. Post-translational modifications: Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Similarity: Belongs to the rotavirus VP4 family. Database links: Entrez Gene: 7011406 ROTSS SwissProt: P12473 ROTSS
Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 色妻手机在线免费视频 | 国产熟妇婬乱A片免费 | 男女操逼的视频在线观看 | 色婷婷精品久久二区二区蜜 | www.激情五月天 | 一级a毛一级a看免费视频 | 大陆久久精品Aa视频 | 欧美黄色一级生活片 | 欧美中文字幕在线观看 | 亚洲精品字幕在线观看 | 一级免费av在线观看 | 国产黃色A片三級三級三級老牛 | 国产又黄又爽的免费视频 | 久久久人成精品色情 | 免费看一级高潮毛片 | 西西西444www无码视 | 日本AⅤ无码乱码国产成人网站 | 国产伦精品一区二区三区妓女下载 | 91精品国产乱码久久久久久蜜臀 | 乡下农村妇女一级毛片 | 国产91在线 | 北美洲 | 打开双腿扒开自慰喷水网站 | 中文字幕日本被黑人无码 | 国产一级一厂片内射视频播放蘑菇 | 精品国产三级A∨在线 | 成人黃色A片三級免费 | 欧美精品久久久久久久久爆乳 | 性感美女网站在线观看 | 国产精品高H爽爽爽嗯嗯嗯视频 | 伦伦影院午夜理论片痴汉 | 小12萝自慰喷白浆网站 | 国产91无码精品秘 入口 | 欧美在线无码精品秘 蜜桃 国产精品一级无码毛片视频 | 一级婬片A片AAA毛片裸体书屋 | 久久久91人妻无码精品蜜桃ID | 亚洲成人精品在线 | 蜜桃av秘 乱码一区二区三区 | 九虎av人人妻人人澡人人爽 | 狂躁少妇XXXX高潮无码 | 亚洲色欲大片蜜桃视频 |