產(chǎn)品編號 | bs-17494R-PE |
英文名稱 | Rabbit Anti-Simian Rotavirus VP4/PE Conjugated antibody |
中文名稱 | PE標(biāo)記的辛諾柏病毒糖VP4/外層衣殼蛋白VP4/猴輪狀病毒VP4抗體 |
別 名 | Hemagglutinin; VP4_ROTSS; Outer Capsid protein VP4 (Hemagglutinin); Outer capsid protein VP4; RVA s4gp1; RVAs4gp1; VP4; Outer capsid protein VP4; Outer capsid protein VP5*; Simian Rotavirus VP5*. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 細(xì)菌及病毒 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 58/85kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from Simian Rotavirus VP4 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Simian Rotavirus VP4 (Outer Capsid protein VP4) (Hemagglutinin) functions as a spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1. VP4 is a homotrimer and adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP4 interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. VP4 interacts with host integrin heterodimer TGA4/ITGB1 and ITGA4/ITGB7. Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Function: Spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1 (By similarity). Outer capsid protein VP5*: forms the spike 'foot' and 'body'. Acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. In integrin-dependent strains, VP5* targets the integrin heterodimer ITGA2/ITGB1 for cell attachment (By similarity). VP8* forms the head of the spikes. It is the viral hemagglutinin and an important target of neutralizing antibodies. In sialic acid-dependent strains, VP8* binds to host cell sialic acid, most probably a ganglioside, providing the initial contact. Subunit: VP4 is a homotrimer (Potential). VP4 adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. Only hints of the third molecule are observed above the capsid surface. It probably performs a series of molecular rearrangements during viral entry. Prior to trypsin cleavage, it is flexible. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP5* is a homotrimer (Potential). The trimer is coiled-coil stabilized by its C-terminus, however, its N-terminus, known as antigen domain or 'body', seems to be flexible allowing it to self-associate either as a dimer or a trimer. The two- to three-fold reorganization and fold-back of VP5* may be linked to membrane penetration, by exposing its hydrophobic region. Interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. Interacts with host integrin heterodimer ITGA4/ITGB1 and ITGA4/ITGB7. Subcellular Location: Outer capsid protein VP4: Virion. Host rough endoplasmic reticulum (Potential). Note=Immature double-layered particles assembled in the cytoplasm bud across the membrane of the endoplasmic reticulum, acquiring during this process a transient lipid membrane that is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the non-structural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles. Outer capsid protein VP8*: Virion. Note=Outer capsid protein. Outer capsid protein VP5*: Virion. Note=Outer capsid protein. Post-translational modifications: Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Similarity: Belongs to the rotavirus VP4 family. Database links: Entrez Gene: 7011406 ROTSS SwissProt: P12473 ROTSS Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 红桃国产精产一区二区三区 | 国产美女一区二区三区 | 免费黄色毛片视频观看 | 亚洲精品久久久久久久久久久 | 精品国产乱码一区二区三区 | 国产免费一区二区三区在线观看 | 福利姬视频在线www 成人午夜色情无码精品 | 色情网站免费在线播放 | 亚洲中文字幕在线播放 | 无码人妻精品一区二区蜜桃色欲 | 亚洲午夜Av社区电影网 | 二三级成人夜晚观看视频 | 国产成人小视频在线 | 又黑又粗又大又硬视频 | 欧美寡妇性猛交XXX无码 | 无码aⅴ一区二区三区 | 国产在线啊啊啊要射了 | 成人小视频免费观看 | 安徽妇搡BBBB搡BBBB小说 | 亚洲精品秘 一区二区三区蜜桃久 | 欧美成人免费在线视频 | 中文字字幕码一二三区 | 无码人妻精品一区 | 亚洲无码精品一区二区 | 91丨九色丨肉丝高跟 | 无套内谢少妇毛片A片软件美国 | 又粗又硬又长又黄的视频 | 亚洲AV秘 无码一区田中 | 在线观看成人免费视频 | 90岁老太婆一级毛片在线播放 | 午夜传媒一区二区三区 | 美女被操视频免费观看 | 四虎海外精品成人视频 | 蜜桃臀aⅴ精品一区二区三区 | 国偷自产视频一区二区久 | av网站在线免费观看 | 色情免费 无码 日韩电话 | 精品黑人一区二区三区国语馆 | EEUSS鲁丝片无码入口 | 久久久精品人妻一区二区三区蜜芽 |