產(chǎn)品編號 | bs-1301R-Cy5.5 |
英文名稱 | Rabbit Anti-FGFR3/Cy5.5 Conjugated antibody |
中文名稱 | Cy5.5標(biāo)記的成纖維細(xì)胞生長因子受體3抗體 |
別 名 | ACH; CD 333; CD333; CD333 antigen; CEK 2; CEK2; FGFR 3; Fibroblast growth factor receptor 3 (achondroplasia thanatophoric dwarfism); Fibroblast growth factor receptor 3; Heparin binding growth factor receptor; HSFGFR3EX; Hydroxyaryl protein kinase; JTK 4; JTK4; MFR 3; SAM 3; Tyrosine kinase JTK 4; Tyrosine kinase JTK4; Z FGFR 3; FGFR3_HUMAN. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 信號轉(zhuǎn)導(dǎo) 生長因子和激素 轉(zhuǎn)錄調(diào)節(jié)因子 細(xì)胞膜受體 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human, Mouse, Rat, (predicted: Chicken, Dog, Cow, Horse, Sheep, ) |
產(chǎn)品應(yīng)用 | IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 86kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human FGFR3 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: The encoded protein is synthesized mainly in corticotroph cells of the anterior pituitary where four cleavage sites are used; adrenocorticotrophin, essential for normal steroidogenesis and the maintenance of normal adrenal weight, and lipotropin beta are the major end products. In other tissues, including the hypothalamus, placenta, and epithelium, all cleavage sites may be used, giving rise to peptides with roles in pain and energy homeostasis, melanocyte stimulation, and immune modulation. These include several distinct melanotropins, lipotropins, and endorphins that are contained within the adrenocorticotrophin and beta-lipotropin peptides. Mutations in this gene have been associated with early onset obesity, adrenal insufficiency, and red hair pigmentation. Alternatively spliced transcript variants encoding the same protein have been described. Function: Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Subunit: Monomer. Homodimer after ligand binding. Interacts with FGF1, FGF2, FGF4, FGF6; FGF8, FGF9, FGF10, FGF17, FGF18, FGF19, FGF20 and FGF23 (in vitro). Interacts with KLB. Affinity for fibroblast growth factors (FGFs) is increased by heparan sulfate glycosaminoglycans that function as coreceptors. Likewise, KLB increases the affinity for FGF19 and FGF21. Interacts with PIK3R1, PLCG1, SOCS1 and SOCS3. Subcellular Location: Cell membrane; Single-pass type I membrane protein. Cytoplasmic vesicle. Endoplasmic reticulum. Note=The activated receptor is rapidly internalized and degraded. Detected in intracellular vesicles after internalization of the autophosphorylated receptor. Tissue Specificity: Expressed in brain, kidney and testis. Very low or no expression in spleen, heart, and muscle. In 20- to 22-week old fetuses it is expressed at high level in kidney, lung, small intestine and brain, and to a lower degree in spleen, liver, and muscle. Isoform 2 is detected in epithelial cells. Isoform 1 is not detected in epithelial cells. Isoform 1 and isoform 2 are detected in fibroblastic cells. Post-translational modifications: Autophosphorylated. Binding of FGF family members together with heparan sulfate proteoglycan or heparin promotes receptor dimerization and autophosphorylation on tyrosine residues. Autophosphorylation occurs in trans between the two FGFR molecules present in the dimer. Phosphorylation at Tyr-724 is essential for stimulation of cell proliferation and activation of PIK3R1, STAT1 and MAP kinase signaling. Phosphorylation at Tyr-760 is required for interaction with PIK3R1 and PLCG1. Ubiquitinated. Is rapidly ubiquitinated after ligand binding and autophosphorylation, leading to receptor internalization and degradation. Subject to both proteasomal and lysosomal degradation. N-glycosylated in the endoplasmic reticulum. The N-glycan chains undergo further maturation to an Endo H-resistant form in the Golgi apparatus. DISEASE: Defects in FGFR3 are the cause of achondroplasia (ACH) [MIM:100800]. ACH is an autosomal dominant disease and is the most frequent form of short-limb dwarfism. It is characterized by a long, narrow trunk, short extremities, particularly in the proximal (rhizomelic) segments, a large head with frontal bossing, hypoplasia of the midface and a trident configuration of the hands. Defects in FGFR3 are the cause of Crouzon syndrome with acanthosis nigricans (CAN) [MIM:612247]. Classic Crouzon disease which is caused by mutations in the FGFR2 gene is characterized by craniosynostosis (premature fusion of the skull sutures), and facial hypoplasia. Crouzon syndrome with acanthosis nigricans (a skin disorder characterized by pigmentation anomalies), CAN, is considered to be an independent disorder from classic Crouzon syndrome. CAN is characterized by additional more severe physical manifestation, such as Chiari malformation, hydrocephalus, and atresia or stenosis of the choanas, and is caused by a specific mutation (Ala-391 to Glu) in the transmembrane domain of FGFR3. It is proposed to have an autosomal dominant mode of inheritance. Defects in FGFR3 are a cause of thanatophoric dysplasia type 1 (TD1) [MIM:187600]; also known as thanatophoric dwarfism or platyspondylic lethal skeletal dysplasia Sand Diego type (PLSD-SD). TD1 is the most common neonatal lethal skeletal dysplasia. Affected individuals display features similar to those seen in homozygous achondroplasia. It causes severe shortening of the limbs with macrocephaly, narrow thorax and short ribs. In the most common subtype, TD1, femur are curved. Defects in FGFR3 are a cause of thanatophoric dysplasia type 2 (TD2) [MIM:187601]. It is a neonatal lethal skeletal dysplasia causing severe shortening of the limbs, narrow thorax and short ribs. Patients with thanatophoric dysplasia type 2 have straight femurs and cloverleaf skull. Defects in FGFR3 are a cause of hypochondroplasia (HCH) [MIM:146000]. HCH is an autosomal dominant disease and is characterized by disproportionate short stature. It resembles achondroplasia, but with a less severe phenotype. Defects in FGFR3 are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Somatic mutations can constitutively activate FGFR3. Defects in FGFR3 are a cause of cervical cancer (CERCA) [MIM:603956]. A malignant neoplasm of the cervix, typically originating from a dysplastic or premalignant lesion previously present at the active squamocolumnar junction. The transformation from mild dysplastic to invasive carcinoma generally occurs slowly within several years, although the rate of this process varies widely. Carcinoma in situ is particularly known to precede invasive cervical cancer in most cases. Cervical cancer is strongly associated with infection by oncogenic types of human papillomavirus. Similarity: Belongs to the protein kinase superfamily. Tyr protein kinase family. Fibroblast growth factor receptor subfamily. Contains 3 Ig-like C2-type (immunoglobulin-like) domains. Contains 1 protein kinase domain. Database links: Entrez Gene: 2261 Human Omim: 134934 Human SwissProt: P22607 Human Unigene: 1420 Human Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. 成纖維細(xì)胞生長因子受體3也是酪氨酸激酶受體家族成員,在細(xì)胞有絲分裂的發(fā)生、血管新生、傷口愈合及腫瘤形成中起重要作用。FGFR3目前多用于腫瘤方面的研究。 |
| 久久精品人妻一区二区三区蜜桃 | 男女激情动图麻豆视频 | 九虎av人人妻人人澡人人爽 | 高H狠艹高潮自慰冒浆久久久 | 亚洲一区二区五十路激情中出自拍 | 蜜桃AV秘 无码一区二 | 18 无套直国产 | 91久久婷婷国产麻豆 | 四川野外少妇极品BBB | 国产农村妇女精品一二区 | 水蜜桃秘 蜜桃在线观看 | 不卡影视在线观看三区 | 久久久久久久久久久久久久动漫 | 亚洲精品国产日韩在线孟若羽 | 欲求不满五十路未亡人 | 国产精品老熟女高潮 | 国产 高潮 白浆 喷 四川一级毛片在线播放 | 中文字幕丰满人妻无码区隔壁人爱 | 成人免费无码特级毛片A片 欧美性猛交XXXXX水多 | 日本强奸乱伦四区 | 中文字幕一区成人电影 | 波多野结衣暴风雨一区二区 | 9l视频自拍蝌蚪9l成人 | 亚洲男人天堂成人网 | 26uuu亚洲精品国产精 | 蜜桃av无码一区二区三区 | 少妇搡BBBB搡BBB搡视频一级 | 国产精品亚洲欧美日韩久久制服诱 | 欧美肥婆日逼视频免费播放 | 国产老熟女伦老熟妇A片小川桃果 | 91亚洲风间由美一二三产区 | 亚洲成人无码内射一区二区 | 日本级婬片A片AAA毛片炙热 | 性精品 A片天美 | 玩弄丰满少妇高潮A片91 | 欧美一级婬片A片久久精品樱花 | 免费看A片奶出水 | 丰满女人又爽又紧又丰满 | 99成人乱码一区二区三区在线 | 国产suv一区二区 |